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We discuss the role of striction in the intertwined magnetic and structural phase transitions in the under-
doped iron pnictides. The magnetoelastic coupling to acoustic modes is then derived and estimated in frame-
work of the multiband spectrum for itinerant electrons with nesting features. We argue that the first-order
character of the magnetoelastic phase transition originates from the lattice instabilities near the onset of
spin-density wave order introducing, thus, a shear acoustic mode as another order parameter. Taking nonhar-
monic terms in the lattice energy into account may explain the splitting of the structural and magnetic transi-
tions in some oxypnictides. Fluctuations of the magnetic order parameter show up in the precursory tempera-
ture dependence of the elastic moduli.
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Considerable efforts have been concentrated recently on
studies of the interdependence for the antiferromagnetic
�AFM� and the superconducting �SC� transitions in the new
iron-based compounds.1 Doping is known to destroy AFM
and increase TC—the temperature for the onset of SC.2

In this presentation, we address the peculiarities and in-
terrelations for the magnetic �Tm� and structural �Tstr� transi-
tions in the parent and underdoped iron pnictides. For con-
creteness, we discuss below the properties of two systems
only: the quarternary REFeAsO �“1111;” RE stands for a rare
earth� and the bilayered AFe2As2 �“A22,” where A
=Sr,Ca,Ba� materials. In both classes, the intertwined mag-
netic and the structural transitions of the weak first order are
observed in a temperature interval of �100–200 K. In
1111’s, the structural change precedes the magnetic
ordering,2,3 while in A22’s magnetic order and change in the
lattice symmetry occur simultaneously in the single first-
order transition.4

It is known that coupling to the lattice may transform a
magnetically driven transition into the weak first-order tran-
sition accompanied by structural changes.5 In Ref. 6 the
problem has been rigorously solved for the elastically isotro-
pic solid, taking fluctuations into account. Unfortunately, the
method of Ref. 6 does not apply to anisotropic materials,
such as iron pnictides, with the tetragonal symmetry and lay-
ered structure. The solution of Ref. 6, however, undoubtedly
contains the main physics for these phenomena. Correspond-
ingly, below we simplify the approach of Ref. 6 to model the
magnetoelastic interactions �striction� and phase transitions
in the parent and underdoped FeAs systems.

The magnetic order in oxypnictides is built of the alter-
nating �AFM� spins running along one of the lattice axis,
while in the other direction the spins are ordered
ferromagnetically.3 In the tetragonal notations, the structure
vectors are commensurate: Q1= �0,�� and Q2= �� ,0�. With
the local picture of interacting Fe spins and the two Heisen-
berg exchange interactions constants J1 �nn� and J2 �nnn�,
such a ground state realizes itself at the inequality J2
�J1 /2. Accompanying orthogonal lattice distortions can be
understood, as in Ref. 5, in terms of a “spin-Peierls” effect,
i.e., the variation in the exchange integrals at the lattice
deformation.7

The present materials, however, are semimetals. Pnictides

are better described in terms of an itinerant scheme. The
consensus is that the energy spectrum obtained in the “first-
principles” calculations8 presents a good starting point. Ac-
cording to Ref. 8, the electron spectrum bears the multiband
character. There are Fermi surfaces �FSs� for the two hole �h�
pockets at the � point �0, 0� and two electronic �e� pockets
located in the tetragonal �unfolded�9 reciprocal lattice at
�0,�� and �� ,0�. An approximate nesting between the e and
h pockets is believed to be responsible for a spin-density
wave �SDW� instability with the two vectors Q1 and Q2 men-
tioned above.9 The main features of this spectrum have been
reproduced in many numerical calculations for all classes of
the new Fe-based materials. In Ref. 10 this spectrum has
been directly observed for LaFePO in the de Haas–van Al-
phen �dHvA� experiments. Below we accept this model.
With Tc�50 K, Tm�Tstr�100–200 K, and the Fermi en-
ergy EF�0.1–0.2 eV for the pockets’ sizes, the model is
expected to allow a mean-field treatment both for SC and
magnetic phenomena.11

“First-principles” calculations provide a reasonable de-
scription of the ground-state properties, albeit some disagree-
ments are not uncommon in the literature �see Ref. 12�.
However, subtleties, especially in a vicinity of phase transi-
tions, remain beyond the reach of numerical analysis.

Among advantages of the “nesting” model9,13,14 is that its
formalism is practically identical to the well-studied BCS
scheme for SC. It is a weak-coupling mean-field scheme if
TSDW�EF. �Fluctuations become important only in a narrow
temperature interval ��T� /T0=Gi�1, as given by sort of a
Levanyuk-Ginzburg criteria Gi.� The Landau functional near
the transition can be derived exactly as it has been done for
superconductivity near Tc.

15

Nevertheless, we prefer not to write equations explicitly.
Numerous unknown parameters that include parameters of
the e and h pockets, interactions, and six elastic moduli for
the tetragonal symmetry of pnictides should make it useless.
For the sake of transparency we hold, where possible, the
discussion on the qualitative level.

The mathematical analogy of the model13,14,16 with the
Cooper pairing in a BCS-type scheme stems from a logarith-
mic divergence for the scattering in the e-h channel in Fig.
1�a�, which has the following form:
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V�p − p��T�
�n

� ��EF�d	�d
p�

�i�n − 	e���i�n − 	h��
= V��EF�ln��̄/T,�� ,

�1�

where

	h = − 	e + � �2�

are e and h energies, while � accounts for deviations from
the ideal nesting. With the notations �1 and �2 for the triplet
�SDW� order parameters corresponding to the structure vec-
tors Q1= �0,�� and Q2= �� ,0�, the equations for �’s have the
same structure as in SC theory,15 as demonstrated in Fig.
1�b�. Let T0 be the “bare” transition temperature in the ab-
sence of coupling to the lattice. The Landau functional17 near
T0 is of the form,


 =� A�

2
���2 + b0

�4

T0
2 + c00

2����2�dr , �3�

where �	��EF� is the characteristic density of states �DOS�.
A, c0, and b0 are constants and �= �T−T0� /T0; 0=vF /2�T0.
The functional �3� is the starting point in the general theory
of the second-order phase transitions.17,18 To account for in-
teractions with the lattice, one adds to Eq. �3� a coupling to
the lattice of the form

Hstr = − q� û�r��̂�r�2dr , �4�

and the elastic energy itself that we also write schematically
as

Hel =� Kû2dr , �5�

where K is an elastic modulus �such as the bulk modulus, for
instance�; the notation û stands for components of the strain
tensor,

uik =
1

2

 �ui

�xk
+

�uk

�xi
� . �6�

For magnetic phenomena, Eq. �4� describes magnetoelastic
interactions and q is called the striction constant. The total
Gibbs energy near the phase transition is

� = 
��� + Hel + Hstr. �7�

In the itinerant model of Eq. �1�, the parameters �1 and �2
are built on the Bloch wave functions. These spatial features
present in the SDW parameters immediately lead to the qua-
dratic coupling between �’s and acoustic degrees of freedom
�Q=0� given by Eq. �4�. An estimate of the striction con-
stants in Eq. �4� follows directly from the logarithmic con-
tribution of Eq. �1�. Indeed, elastic deformations change the
parameter � in Eq. �3� that controls the degree of the nesting,

� 	 ��u� = �0 + �û . �8�

From Eq. �1� and Fig. 1�b� it is seen that

� → � + �
û

T0
. �9�

Making use of Eq. �3�, we estimate

q �
��

T0
� �
EF

T0
� �10�

�taking � on order of characteristic atomic energy EF�.
Return to Eqs. �4�–�7� and assume homogeneous û. Mini-

mizing � over û, we obtain

Kû = q�� �2dr

V
 �11�

�with V for the volume�. The effective Landau functional 
̃
is


̃min = 
��� − 
 1

2K
��q

� �2�r�dr

V
�

2

. �12�

In the mean field �2�r�=const, and Eq. �12� reproduces the
result of Ref. 6: the functional 
 acquires a negative contri-
bution to the biquadratic term in Eq. �3�. Should the total be
negative, the transition becomes first order. �Higher-order
terms in the expansion �3� become necessary.�

In the presence of an external homogeneous deformation,
ûext substitution into Eq. �9�, �→�+��ûext /T0�, leads to


eff = 

� + �
ûext

T0
� . �13�

Differentiating, we find

�2
eff

� ûext
2 =

�2

T2

�2


��2 = −
�2C���

T0
, �14�

where C��� is the specific heat. According to Eq. �14�, al-
ready in the Landau mean-field approach the jump �C in the
specific heat at the transition is accompanied by a negative
steplike change in elastic moduli. The variation is of the
atomic order. Therefore, the lattice would become unstable,
and the second-order character of a transition changes to the
first-order one.

h

+ + ...
e

h

e

∆( ) = p∆( ) + (∆( ) )terms
3 pp

(a)

(b)

FIG. 1. �a� The logarithmic nesting model. �b� Mean-field equa-
tions near Tc.
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In Refs. 6 and 19, the attention has been drawn to the fact
that the specific heat C�T� in Eq. �14� actually has a singu-
larity at T0,

C�T� � ���−�. �15�

�� is the so-called scaling index for the specific heat C�T�.�
As to the order parameter, it appears below T0 �see Ref. 17;
§148, p. 484�,

��T� � �− ����� � 0� . �16�

Therefore, an elastic instability is ubiquitous for any mag-
netic transition. In the model chosen above, the instability
occurs inside a narrow temperature interval controlled by the
Levanyuk-Ginzburg parameter. Provided that layered pnic-
tides can be treated, in the first approximation, as two-
dimensional �2D�, we write

��T

T0
� 	 Gi

2D � 
TSDW

EF
� � 1. �17�

By the order of magnitude, the same parameter also controls
the width of the hysteresis.

Note that even for homogeneous lattice deformations, the
magnetoelastic coupling �Eq. �4�� leads to Eq. �12�, with the
present biquadratic term that describes nonlocal interactions
for the order parameter �. In Ref. 6 inhomogeneous fluctua-
tions result in the cancellation of the nonlocal term �12� for
the isotropic �liquid� media. However, the nonlocal coupling
terms are always present for any anisotropic solid. As it was
mentioned above, the problem could be rigorously solved in
Ref. 6 only for the elastically isotropic solid �i.e., for a solid
characterized by the bulk and shear moduli�. In all other
cases, the nonlocal term �12� that comes about due to ex-
change by acoustic phonons becomes strongly anisotropic.
We now simplify the model6 by restricting our consideration
to homogeneous lattice fluctuations. Inhomogeneous fluctua-
tions should not qualitatively change the physics of the prob-
lem.

With this in mind, one can rewrite Eq. �3� in the form

� =
K

2
û2 + 

� +

�

T0
û� − �̂û , �18�

where 
��+ �

T0
û� is the exact functional �3�, i.e., the func-

tional that would describe the second-order phase transition
driven by the order parameter � neglecting striction effects.
In particular, it has the contribution 
sing responsible for the
singular behavior of the specific heat C�T� �Eq. �15��. The
term −�̂û stands for the applied external stress ��̂ is a proper
component of the stress tensor; this term is needed at calcu-
lations of the temperature behavior of elastic moduli across
the transition.�

In the presence of nonzero stress �̂�0, fluctuations take
place around the present equilibrium point ûext,

ûext =
�̂

K
. �19�

Rewriting in Eq. �18� û→ û+ ûext, we obtain

� = −
�̂2

2K
+

K

2
û2 + 

� +

�

T0
û +

��̂

T0K
� . �20�

The contribution ��̂ / �T0K� in the argument of 
�x� �Eq.
�20�� shifts the transition temperature T0 under the applied
stress,

T0��̂� = T0 −
��

K
. �21�

The Gibbs energy �20� must be minimized over fluctuations
of �homogeneous� deformations û,

��

�û
= Kû +

�

T0

��x� = 0, �22�

where

x = � +
�

T0
u +

��

T0K
. �23�

One may easily recognize in Eqs. �20� and �22� the anal-
ogy to equations in Ref. 6 describing the transitions in the
elastically isotropic solid body.

To be now more specific, note that the elastic energy of
homogeneous deformations for the tetragonal lattice can be
rewritten in terms of the even irreducible representation of
the D4h group,

A1g:uxx + uyy,uzz;B1g:uxx − uyy ;B2g:uxy ;Eg:uzx,uzy . �24�

In principle, any distortion in Eq. �24� perturbs the elec-
tronic spectrum and, hence, affects the nesting features.
Therefore, the number of the independent striction constants
q’s in Eq. �4� �or �’s in Eqs. �8� and �9�� may be large. In
view that the layered character of pnictides makes them close
to two-dimensional systems, the nesting parameter � in Eq.
�8� is controlled mainly by the strain components in Eq. �24�
that do not have the z indices. Rewriting the 2D part of the
elastic energy �5� in the form

Hel =
K

2
�uxx + uyy�2 +

�1

2
�uxx − uyy�2 + 2�2uxy

2 , �25�

with three independent moduli according to Eq. �24� and
three magnetoelastic constants qi �or �i in Eqs. �8� and �9��
and taking into account the uniaxial symmetry along �0,��
or �� ,0� directions for the parameters �1 and �2, we sim-
plify the problem further and rewrite Eq. �9� as

� → � +
�+

T0
u+ +

�−

T0
u−, �26�

where u+=uxx+uyy and u−=uxx−uyy. The second term is re-
sponsible for the orthorhombic deformation of the lattice.

For the actual calculations, one would need the expression
for 
���. In our case the fluctuations are strong only in a
narrow vicinity of the phase transition, and we expect that
the first-order transition occurs inside the same interval.
Therefore, only the singular part �
sing��� is of importance.
We limit ourselves by the first fluctuation correction to the
mean field 
, which we calculate in exactly the same manner
as in Ref. 17 �see §147, problem, p. 482�. The minor differ-
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ence is that for the strongly anisotropic pnictides, one needs
to introduce in Eq. �3� the in-plane and out-of-plane coher-
ence lengths 0� �0�. After an elementary calculation it fol-
lows:

�
sing��� = − const�T00�
−20�

−1 ����3/2 	 − B���3/2, �27�

where const is a numeric factor that depends on the model
details. �Strictly speaking, the values of B in Eq. �27� differ
by a factor of 23/2 on the two sides of T0 �Ref. 17� �see §146,
footnote on p. 475�.� For the singularity in the specific heat,
Eq. �27� gives

�C��� =
3

4T0
B���−1/2. �28�

Comparing Eq. �28� with the normal specific heat Cn��T0
leads to the criterion,

B

�T0
2 ���−1/2 	 ����−1/2 � 1. �29�

�In the strictly 2D limit ��0→�� one would obtain the cri-
teria �17��. With Eqs. �14� and �23� one finds that corrections
to the elastic moduli of Eq. �25� become strong in the same
order of magnitude temperature interval Eq. �17� �or Eq.
�29�� if both K and � are of the atomic scale.

To demonstrate the emergence of the first-order transition
from Eqs. �20� and �22�, assume—for simplicity sake—�
=1 /2 in Eq. �15�, i.e., extrapolate Eq. �27� over the whole
fluctuation interval. From Eq. �22� �for each u+,−� it follows:

Ku+ =
3

2
B

�+

T0

x

�x�
�x�1/2; u−�1 =

3

2
B

�−

T0

x

�x�
�x�1/2. �30�

With the notations

�+ =
3

2
B

�+
2

KT0
2 , �− =

3

2
B

�−
2

�1T0
2 , �31�

�+u+

T0
= �,

�−u−

T0
= �, x 	 � + � + � , �32�

we rewrite Eq. �30� as

1

�+
� =

x

�x�
�x�1/2,

1

�−
� =

x

�x�
�x�1/2 �33�

or

�+
−1� = �−

−1�, x = � + �
1 +
�−

�+
� = � + v . �34�

Finally, with

v = ��+ + �−�
x

�x�
x1/2, �35�

we arrive to the single equation

x = � + ��+ + �−�
x

�x�
x1/2. �36�

Equation �36�, such as Eq. �13� of Ref. 6, reveals the typical
features of a first-order transition. At small enough �, there

are three solutions for x. If coefficients B in Eq. �27� are
equal on both sides of T0, the transition takes place at �=0,
where

x+ = − x− = ��+ + �−�2 �37�

determines the jumps of u+ ,u− at the transition �note that at
negative x−�0, the driving parameter, according to Eq. �16�,
is finite�. The area of hysteresis is determined by the equa-
tion

2 = ��+ + �−��x�−1/2. �38�

These results qualitatively agree with the observed simul-
taneous onset both of orthorhombic distortions and the
“stripe” SDW order in the iron system A22.4 The distortion
�32� just accompany the magnetic transition. In case of the
“1111” class, the temperature Tstr for the onset of the ortho-
rhombic deformation precedes the onset of the magnetic or-
der at Tm.3 The two temperatures are rather close: �T=Tstr
−Tm�0 is on order of 10–20 K, so that by order of magni-
tude �T /Tstr�0.1 falls into the range of Eq. �17� with EF
�0.1–0.2 eV taken for the pockets’ depths obtained in
“first-principle” calculations.8,20 Such closeness seen among
most of REFeAsO �e.g., compare La �Ref. 3� and Nd �Ref.
21�� is strongly in favor that the structural transition is di-
rectly related to the magnetic instability. In the language of
local Fe spins, the attempt was made in Ref. 22 to ascribe the
temperature interval separating Tstr and Tm to the appearance
of a “nematic phase” that comes about due to strong spin
fluctuations above Tm. We suggest that both transitions have
the common origin and come about as the result of the lattice
instabilities caused by the striction. Indeed, according to Eq.
�14�, the striction triggers softening of elastic moduli as tem-
perature approaches the transition interval �17� or Eq. �29�.
Assume that it takes place more strongly for modulus �1 in
Eq. �25�. Recall that the orthorhombic distortion is the sym-
metry change by itself and for the tetragonal lattice is char-
acterized by the symmetry parameter u−=uxx−uyy. So far as
the dependence �
sing��+ ��− /T0�u−� on u− is the only form
of the nonlinear elastic energy, the above analysis applies.
However, when the renormalized modulus �1eff becomes
small, other nonlinear terms ever present in the lattice must
be also taken into account. As the result, the Landau func-
tional for the parameter u−=uxx−uyy also depends on those
contributions. The higher-order terms in u− becoming impor-
tant when renormalized �1eff is small nearby magnetic T0.
The mean-field treatment of the present symmetry parameter
u− could then be applied in the usual way for the second-
order tetraorthotransition at Tstr.

Experimentally, the structural distortions at Tstr appear in
the weak first-order transition.3 That last result immediately
follows from the fact that by symmetry, the orthorhombic
transition in the tetragonal lattice infers its own quadratic
striction. Indeed, the following cubic terms are allowed in
the tetragonal lattice by the symmetry reasons:

q�u+u−
2 + q�uzzu−

2 , �39�

in addition to the elastic terms
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K

2
u+

2 +
K�

2
uzz

2 . �40�

In terms of our models �1�, �3�, and �7�, the fact that Tm
�Tstr should mean that the nonzero distortion u− below Tstr
makes the nesting condition �1� worse.

Let us add a few final comments to the analyses above.
The order of magnitude estimate of the in-plane lattice dis-
tortions at low enough temperatures follows from Eqs. �10�
and �11�:

u �
q

K
�

�EF

KT0
T0

2 �
T0

EF
� 10−2 – 10−3 �41�

that agrees well with the experimental data of Refs. 23–25.
The hysteresis �T from Eq. �38� agrees by the order of mag-
nitude with data.4

There are no experimental data for the volume change
�V /V. The lattice deformation along the c axis, in principle,
could be obtained from Eqs. �39� and �40� together

uzz �
q�

K�

u−
2 . �42�

In Eq. �42� both q� and K� are expected to be small in a
layered material. These parameters remain unknown in the
oxypnictides.

Equation �14� together with Eq. �27� provides another ob-
servable feature. At temperatures above T0 the fluctuation
corrections to the elastic moduli should behave as

��T − T0�−1/2, �43�

while in the 2D limit of isolated planes

��T − T0�−1. �44�

The data25 do not allow to distinguish between the exponents
in Eqs. �43� and �44�.

To summarize, in the frameworks of multiband electronic
spectrum with nesting features, the theoretical scheme is
elaborated to treat striction in iron pnictides. Magnetoelastic
coupling changes the second-order character of magnetic
transition. The transition becomes of the first order. Whether
the transition bears strong or weak first-order character may
depend on details. Provided that T0�EF, the weak first-order
transition is predicted. The model, when applied to the lay-
ered FeAs systems, leads to estimates of the correct order of
magnitude. Discontinuities of all parameters at the transition
are due to lattice instabilities. Magnetoelastic interactions
may split the magnetic �SDW� transition at Tm and the ortho-
rhombic deformations at Tstr�Tm. The model predicts a no-
ticeable precursory temperature dependence above the tran-
sition temperature in the elastic moduli.

The obtained results are in good qualitative agreement
with peculiarities of the phase diagram of present parent or
underdoped FeAs materials well above the temperature of
superconducting transition.
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